LHCD

The VeloPix ASIC for the upgrade of the LHCb vertex locator.

J. Buytaert (CERN, Geneva) on behalf the Velo upgrade group

2018 test beam spot by VeloPix

Contents:

- Context of LHCb Velo upgrade.
- Overview of the VeloPix ASIC.
- Analogue & digital functionality of pixel cell.
- Internal data readout path.
- Radiation qualification.
- Production of ASIC.
- Summary.

LHCb VELO upgrade.

- . LHCb is a dedicated experiment at CERN's LHC searching for new physics by studying CP violation and rare decays of b and c quarks.
- Forward angle spectrometer with excellent vertex resolution and PID
- A full detector upgrade will be installed in 2019-2020 to reach 5x higher luminosity and improved efficiency.
- No more hardware trigger \rightarrow all data is read out @40MHz and sent to a CPU farm.

2 x 26 modules Poster N-22-152 -"The LHCb Upgrade Program" (Wednesday, 14, 10:20 AM) N-26-01-"The LHCb VELO Upgrade" (Wednesday, 14, 1:40 PM) N-32-01 – The Timepix3 Telescope and Sensor R&D

for the LHCb VELO Upgrade

(Thursday, 15, 8:00 AM)

VELO module.

Pixel sensor bump bonded to 3 VeloPix ASICs.

Requirements for VeloPix.

- Sustain readout of 600 million particles/s for the hottest ASIC : > 15 Gbit/s
- With a hit detection efficiency > 99% at highest occupancy region.
 - **fast return to baseline** (16 ke⁻ in ~300 ns)
 - operational threshold at ≤ 1 ke- (expected signal from sensor at end of life ~7ke⁻)
- SEE & TID radiation hardness to
 - 400 Mrad and 8 x 10¹⁵ 1MeVn_{eq}/cm² (non-uniform particle fluence)
 - Capable of 12 nA pixel leakage current.
- Power consumption < 3 W

VeloPix overview

- Array of 256 x 256 pixels (55 x 55 μm²).
- optimized for e⁻ collection (n-in-p sensors)
- Data readout:
 - Capable of 800 M pixelhit/s for full ASIC.
 - Trigger-less, data driven.
 - All data directed to a **central crossbar router**.
 - 4 high speed 5.12 Gbit/s serial outputs "GWT".
- "Super-pixel" blocks:
 - 8 pixels share common digital functionality.
 - 30% reduction of data volume.
- Primary readout is **binary** pixel hit.
 - a special readout mode allows to read **charge amplitude**.
- Implemented in 130 nm CMOS using a custom CERN High density library for logic in pixel matrix.
- Power consumption ~1.5 W.

Pixel and super pixel diagram

Pixel pre-amplifier.

- Krummenacher feedback for leakage current compensation.
- Optimised for electron collection (n-in-p sensor)
- Power consumption $\sim 2.5 \ \mu A/pixel$.

Pixel discriminator.

- Designed for **minimal time walk**.
 - Cascade of 3 differential amplifier stages.
 - 2 low gain stages & 1 high gain stage.

• Power consumption \sim 3.6 μ A /pixel.

Pixel digital front-end

- The logic is **reconfigurable** as:
 - a shift register
 - for write/read to local pixel configuration memory .
 - a **TOT counter** (6bit):
 - acts as a "digital threshold" in normal readout: discriminator hits are accepted if ToT counter > 0,1,2,3 (programmable).
 - The counted value can be read through slow control interface (80Mbit/s). Used for monitoring charge collection from irradiated sensors.
 - A hit counter (6 bit) :
 - used during threshold equalisation procedure.

Super pixel

- It contains **common logic for 8 pixels**:
 - Common FIFO buffer (2 event deep buffer)
 - Common address & time stamping:
 - saves 30% in total data volume !
 - Common data access to column bus.
 - Arbiter provides fair sharing of column bus bandwidth.
 - Data format (23 bit) of <u>Super Pixel Packet "SPP"</u>:

SP address 13b Bxid 9b Hit map 8b

- SEU protection :
 - Full triple redundancy implemented for FSM & configuration registers.
 - No protection for data registers. Low SEU can be tolerated.
- All logic in pixel & super pixel is synthesized and auto-P&R

Internal readout : column «bus»

«bus» = cascade of 64 data nodes.

- data is transferred between nodes at each clock cycle.
- More **power efficient & less time critical** than a standard bus with data transfers in single clock cycle (14mm long!).
- longer **latency** :
 - 64 clock cycles for transfer of SPP from top to bottom.
 - Latency is **not critical** for a trigger less data-driven acquisition.
 - latency must be ≤ 512 for non-ambiguous time stamp. (9 bit BCID)
- Maximum data transfer rate is 13.3 M packets/s.
 - handshake protocol between SP.
- Arbitration rule:
 - to guarantee fair sharing of bus bandwidth between all SP.

Internal readout : EOC «data fabric»

Internal readout : Router & Output formatting

- Line encoding for DC balance and clock recovery.
- Self synchronising (no need for reset, seed or sync pattern). Decoding of 30 bit frame only depends on previous frame.
- Limited propagation of bit transmission error: only loss of 2 frames of 30 bit.

GWT data frame format :

8bit	30bit	30 bit	30bit	30bit
Header	SPP 0	SPP 1	SPP 2	SPP 3
Heeden (hidentifiers) (hitensity)				

Header = 4b identifier + 4bit parity

•

Internal readout : "GWT" Gigabit Wireline Transmitter

Radiation tests: SEU, SEL and TID.

Also observed **SEL** ("single event latch-ups"). First observation in 130 nm. Reason well understood and corrected. Predictions in CAD tool agree very well with micro-laser test (@facility in Montpellier, FR).

Total ionising dose was tested up to 400 Mrad with Xray:
-No change in digital power consumption observed.
-No drift in analogue parameters (pixel thresholds & noise).
-Global DACs remain stable.

Production

• Wafer probe testing:

- 92 ASICs per wafer.
- 1 wafer tested per day.
- Yield is ~60% (on 12 wafers)

ASICs are retested after **bump bonding** to sensors. Verify bond connections : measured failure < 10⁻⁶

First I/V measurement of sensors (biased up to 1000V in vacuum).

ASICs are **wire-bonded** to hybrids. I/O padlayout was optimised during ASIC design.

Summary

- The VeloPix ASIC meets the challenging requirements of low-noise, high data readout speed and high radiation hardness.
- The ASICs have been produced & tested and first modules are being assembled.
- The new LHCb VELO pixel detector will be installed in 2019-2020.

